Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Neurosci ; 16: 1148840, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37293546

RESUMO

Acute injury to the adult zebrafish retina triggers the release of pro-inflammatory cytokines and growth factors that stimulate multiple gene regulatory networks, which ultimately stimulate Müller glia to proliferate and regenerate neurons. In contrast, zebrafish carrying mutations in cep290 or bbs2 undergo progressive loss of cone photoreceptors and exhibit signs of microglia activation and inflammation, but the mutants fail to stimulate a regeneration response. To identify transcriptional changes that occur in zebrafish mutants undergoing progressive photoreceptor degeneration, RNA-seq transcriptional profiling was performed on cep290-/- and bbs2-/- retinas. The PANTHER Classification System was used to identify biological processes and signaling pathways that were differentially expressed between mutants and wild-type siblings during degeneration. As expected, genes associated with phototransduction were downregulated in cep290 and bbs2 mutants compared to wild-type siblings. Although both cep290 and bbs2 mutants undergo proliferation of rod precursors in response to retinal degeneration, the process of negatively regulating proliferation is enriched for upregulated genes, and this negative regulation may restrict proliferation of Müller glia and inhibit regeneration. A total of 815 differentially expressed genes (DEGs) were shared by cep290 and bbs2 retinas. Genes in pathways associated with inflammation, apoptosis, stress response, and PDGF signaling were overrepresented. Identifying the genes and biological pathways that are common in zebrafish models of inherited retinal degeneration provides a foundation for future studies on the mechanisms that regulate cell death as well as processes that prohibit Müller cell reprogramming or proliferation in a model capable of retinal regeneration. The pathways will provide targets for future interventions that may promote successful regeneration of lost photoreceptors.

2.
J Neurosci ; 42(26): 5144-5158, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35672150

RESUMO

Photoreceptor degeneration leads to irreversible vision loss in humans with retinal dystrophies such as retinitis pigmentosa. Whereas photoreceptor loss is permanent in mammals, zebrafish possesses the ability to regenerate retinal neurons and restore visual function. Following acute damage, Müller glia (MG) re-enter the cell cycle and produce multipotent progenitors whose progeny differentiate into mature neurons. Both MG reprogramming and proliferation of retinal progenitor cells require reactive microglia and associated inflammatory signaling. Paradoxically, in zebrafish models of retinal degeneration, photoreceptor death does not induce the MG to reprogram and regenerate lost cells. Here, we used male and female zebrafish cep290 mutants to demonstrate that progressive cone degeneration generates an immune response but does not stimulate MG proliferation. Acute light damage triggered photoreceptor regeneration in cep290 mutants but cones were only restored to prelesion densities. Using irf8 mutant zebrafish, we found that the chronic absence of microglia reduced inflammation and rescued cone degeneration in cep290 mutants. Finally, single-cell RNA-sequencing revealed sustained expression of notch3 in MG of cep290 mutants and inhibition of Notch signaling induced MG to re-enter the cell cycle. Our findings provide new insights on the requirements for MG to proliferate and the potential for immunosuppression to prolong photoreceptor survival.SIGNIFICANCE STATEMENT Inherited retinal degenerations (IRDs) are genetic diseases that lead to the progressive loss of photoreceptors and the permanent loss of vision. Zebrafish can regenerate photoreceptors after acute injury by reprogramming Müller glia (MG) into stem-like cells that produce retinal progenitors, but this regenerative process fails to occur in zebrafish models of IRDs. Here, we show that Notch pathway inhibition can promote photoreceptor regeneration in models of progressive degeneration and that immunosuppression can prevent photoreceptor loss. These results offer insight into the pathways that promote MG-dependent regeneration and the role of inflammation in photoreceptor degeneration.


Assuntos
Degeneração Retiniana , Distrofias Retinianas , Animais , Animais Geneticamente Modificados , Proliferação de Células , Feminino , Terapia de Imunossupressão , Inflamação/metabolismo , Masculino , Mamíferos , Regeneração/fisiologia , Retina/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Degeneração Retiniana/patologia , Distrofias Retinianas/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
3.
Mol Cell Biol ; 35(23): 4030-42, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26391954

RESUMO

RNA binding proteins (RBPs) are increasingly recognized as essential factors in tissue development and homeostasis. The polypyrimidine tract binding (PTB) protein family of RBPs are important posttranscriptional regulators of gene expression. In the nervous system, the function and importance of PTB protein 2 (Ptbp2) as a key alternative splicing regulator is well established. Ptbp2 is also abundantly expressed during spermatogenesis, but its role in this developmental program has not been explored. Additionally, the importance of alternative splicing regulation in spermatogenesis is unclear. Here, we demonstrate that Ptbp2 is essential for spermatogenesis. We also describe an improved dual fluorescence flow cytometry strategy to discriminate, quantify, and collect germ cells in different stages of development. Using this approach, in combination with traditional histological methods, we show that Ptbp2 ablation results in germ cell loss due to increased apoptosis of meiotic spermatocytes and postmeiotic arrest of spermatid differentiation. Furthermore, we show that Ptbp2 is required for alternative splicing regulation in the testis, as in brain. Strikingly, not all of the alternatively spliced RNAs examined were sensitive to Ptbp2 loss in both tissues. Collectively, the data provide evidence for an important role for alternative splicing regulation in germ cell development and a central role for Ptbp2 in this process.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Espermatogênese , Espermatozoides/citologia , Processamento Alternativo , Animais , Células Cultivadas , Feminino , Deleção de Genes , Células Germinativas/citologia , Células Germinativas/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , RNA Mensageiro/genética , Espermatozoides/metabolismo , Testículo/citologia , Testículo/metabolismo
4.
Genes Dev ; 26(14): 1626-42, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22802532

RESUMO

Two polypyrimidine tract RNA-binding proteins (PTBs), one near-ubiquitously expressed (Ptbp1) and another highly tissue-restricted (Ptbp2), regulate RNA in interrelated but incompletely understood ways. Ptbp1, a splicing regulator, is replaced in the brain and differentiated neuronal cell lines by Ptbp2. To define the roles of Ptbp2 in the nervous system, we generated two independent Ptbp2-null strains, unexpectedly revealing that Ptbp2 is expressed in neuronal progenitors and is essential for postnatal survival. A HITS-CLIP (high-throughput sequencing cross-linking immunoprecipitation)-generated map of reproducible Ptbp2-RNA interactions in the developing mouse neocortex, combined with results from splicing-sensitive microarrays, demonstrated that the major action of Ptbp2 is to inhibit adult-specific alternative exons by binding pyrimidine-rich sequences upstream of and/or within them. These regulated exons are present in mRNAs encoding proteins associated with control of cell fate, proliferation, and the actin cytoskeleton, suggesting a role for Ptbp2 in neurogenesis. Indeed, neuronal progenitors in the Ptbp2-null brain exhibited an aberrant polarity and were associated with regions of premature neurogenesis and reduced progenitor pools. Thus, Ptbp2 inhibition of a discrete set of adult neuronal exons underlies early brain development prior to neuronal differentiation and is essential for postnatal survival.


Assuntos
Processamento Alternativo/fisiologia , Encéfalo/embriologia , Diferenciação Celular/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , RNA Mensageiro/metabolismo , Animais , Encéfalo/metabolismo , Éxons/fisiologia , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Camundongos , Camundongos Mutantes , Proteínas do Tecido Nervoso/genética , Células-Tronco Neurais/citologia , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...